Effect of Faradarmani Consciousness Field on the Mice 4T1 Breast Cancer Model

Mohammad Ali Taheri¹, Hamid Karimi², Majid Mahdavi³, Sara Torabi⁴, Noushin Nabavi⁵, Farid Semsarha⁶*

ABSTRACT

The use of complementary and alternative medicine along with conventional methods of chemotherapy and radiation therapy, with the aim of cancer prevention and treatment, has been investigated and validated in various preclinical and clinical studies. Meanwhile, in contrast to the widespread use of medicinal plants and other complementary and alternative medicine methods in the preclinical trials with animal models of cancer, as an important step confirming the safe and effective use in humans, similar studies in the field of mind-body modalities are rarely examined. A new treatment method founded and introduced by Mohammad Ali Taheri provides a different type of consciousness (Taheri Consciousness Fields) that is neither matter nor energy. The effectiveness and capability of this new complementary and alternative medicine were examined in this study, and the effectiveness of one of Taheri Consciousness Fields (TCFs) named Faradarmani, was investigated in the 4T1 orthotopic breast cancer spontaneous metastasis Balb/c mouse model. According to the results, the Faradarmani CF treatment, during tumor progression, had a significant effect on inhibiting the growth of cancerous masses and preventing metastasis in the mice animal model under the study. Moreover, this treatment had a reproducible and significant positive effect on survival behavior and natural vital functions of the treated mice in comparison with the untreated control group.

Keywords: Faradarmani; Taheri Consciousness Fields; Cosmic Consciousness Network; breast cancer; 4T1 model; complementary and alternative medicine
INTRODUCTION

Cancer is one of the leading causes of death in the world. According to the World Health Organization (WHO), in 2020, there were 2.3 million women diagnosed with breast cancer and 685 000 deaths globally. Breast cancer is one of the world’s most prevalent cancer diseases with high incidence rates in all countries (Ganz et al., 2015). After coronary heart disease and accidents, cancers are the third cause of death in Iran (Mousavi et al., 2009; Farhood et al., 2018). Metastasis represents the most destructive stage of cancer in which it is difficult to remove tumors as well as treat cancer. For solid tumors, about 66.7% of cancer deaths were registered with metastases as a contributing cause (Dillekş et al., 2019). Thus, understanding the biology of metastases and accurate diagnosis in the early stage is a promising strategy to reduce cancer mortality.

Many patients with cancer use complementary and alternative medical (CAM) therapies and about 50% already use CAM alongside cancer therapy (Ciarlo et al., 2021). Given the high prevalence of CAM use in patients, more research is required to determine whether they are efficacious. Among CAMs, various mind-body therapies have also been used for disease prevention, immune system enhancement, and symptom control by cancer survivors (Mayden, 2012).

According to the guidelines of WHO, in order to evaluate the effectiveness of any treatment for various human diseases, it is first necessary to conduct preclinical studies in cellular laboratory conditions (*In-vitro*) and in animal models (*In-vivo*). In the field of cancer research, the use of animal-based research can be a valuable tool for the preclinical investigation of anti-cancer therapeutics and cancer prevention. The mouse has been the traditional animal model for basic and preclinical studies of cancer (Yee et al., 2015). The breast carcinoma 4T1 cell line is an appropriate candidate for studying the processes of metastasis and understanding its molecular mechanisms (Aslakson et al., 1999). Mouse breast cancer has been used to investigate the effects of a variety of complementary and alternative medicine techniques, such as Therapeutic Touch (Gronowicz et al., 2015) and largely in herbal medicine (Chen et al., 2007; Xu et al., 2011). The use of animal models for evaluating the effectiveness of conventional methods of mind-body therapy, such as meditation and mindfulness is impossible, due to the necessity for the active role of the recipient of the treatment.

The nature of consciousness and its place in science has received much attention in the current century. Many philosophical and scientific theories have been proposed in this area. In the 1980s, Mohammad Ali Taheri introduced novel fields with a non-material/non-energetic nature named Taheri Consciousness Fields (TCFs). In this perspective, T-Consciousness is one of the three existing elements of the universe apart from matter and energy. According to this theory, there are various TCFs with different functions, which are the subcategories of a networked universal internet called the Cosmic Consciousness Network (CCN). The major difference between the theory of TCFs and other theoretical concepts about consciousness is related to the practical application of the TCFs. These fields can apply to all living and non-living creatures, including plants, animals, microorganisms, materials, etc.

Mohammad Ali Taheri, the founder of Erfan Keyhani Halqeh, a school of thought, introduced a new science in 2020 as a branch of this school. He coined the term Sciencefact for this new science because it utilizes scientific investigations to prove the existence of T-Consciousness as an irrefutable phenomenon and a fact. Although science focuses solely on the study of matter and energy and Sciencefact, by contrast, explores the effects of the [non-material/non-energetic] TCFs, Sciencefact has provided a common ground between the two by conducting reproducible laboratory experiments in various scientific fields, and it has used...
the scientific approach in proving TCFs.

The influence of the TCFs begins with the Connection between CCN as the Whole Taheri Consciousness of the universe and the subjects of study as a part. This Connection called “Ettesal” is established by a Faradarmangar’s mind (a certified and trained individual who has been entrusted with the TCFs). The human mind has an intermediary role (Announcer) which plays a part by fleeting attention to the subject of study and then the main achievement obtained as a result of the effects of the TCFs. These fields cannot be directly measured by science, but it is possible to investigate their effects on various subjects through reproducible laboratory experiments (Taheri, 2013).

The research methodology in the study of T-Consciousness has been founded on the process of Assumption, Argument, and Proof, in which the basic Assumption is: The Cosmos was formed by a third element called T-Consciousness that is different from matter and energy.

The Argument: The existence of TCFs can be demonstrated by their effects on matter and energy (e.g., humans, animals, plants, microorganisms, cells, materials, etc.)

The Proof is the scientific verification of the effects of TCFs on matter and energy (according to the Argument) through various reproducible scientific experiments.

Accordingly, to investigate and verify the existence, effects and mechanisms of TCFs, the following five research phases (Phases 0 through 4), and the aims of each phase are outlined below.

Phase-0 studies aim to prove the existence of TCFs by observing their effects. The nature of T-Consciousness and what it is will not be addressed in this phase. Phase-1 explores the varied effects of different TCFs. Phase-2 examines the reason behind the varied effects of these fields. Phase-3 investigates the mechanism of TCFs effects on matter and energy. Finally, Phase-4 draws significant conclusions, particularly with regard to the mind and memory of matter and their relation to the T-Consciousness, etc. The present study was aimed to investigate the effects of Faradarmani, as a suggested complementary and alternative medicine approach on the 4T1 mice model of breast cancer.

Materials and Methods
Faradarmani CF (FCF) application
TCFs were applied to the samples according to the protocols regulated by the COSMOintel research center (www.COSMOintel.com). A request for Connection to the CCN to utilize TCFs can be placed through the COSMOintel website in the “Assign Announcement” section. This access is available for everyone at no cost. In order to study and experience this Connection, the researchers can register on the website at any time and in order to report the experiment to the COSMOintel research center. Certain details of the experiment must be provided to the center; for example, the characteristics or number and name of samples and controls must be specified. This entire experiment was carried out as a double-blind method where lab technicians were completely unaware of TCFs theory, and the Faradarmangar at the COSMOintel research center who established the Connection was unaware of the details of the study. Double-blind is a gold standard that is common in science experiments in the field of medicine and psychology, involving theoretical and practical testing. In this research, two groups (mentioned in the 3.1 section) were connected to CCN daily for 4 weeks.

Cell Allograft Metastasis Mouse Model
The 4T1 Cell Culture and Harvest
4T1 mouse mammary tumor cells were cultured in RPMI 1640 medium containing 10% fetal bo-
vine serum (FBS), 100 units/mL of penicillin, and 100 μg/mL of streptomycin in a humidified atmosphere containing 5% CO₂ at 37 °C. Then, the cells were collected, and after centrifugation; they were calculated by Neo-Bar lam (Yang et al., 2012)

Tumor cell injection into mice
Simultaneously with the previous step, twenty 6–8 weeks female Balb/c mice were obtained from the Faculty of Veterinary Medicine, Urmia University, and kept under standard laboratory conditions until the 4T1 cancer cells (triple-negative mouse breast cancer (PR-, ER-, HER-) were prepared for injection. 1x104 cells were inoculated into the back of each mouse subcutaneously. Fourteen days after injection, tumor nodules were observed in the back of the mice (Figure 1).

![Figure 1. The cancer mouse model, 14 days after the 4T1 cell injection.](image)

There were four groups (n= 5 mice), including the negative control, the cancer FCF pre-treatment group, the cancer FCF post-treatment group, and the cancer control group. More explanation is mentioned in the first part of the result section.

Histology of tumor cells and selected organs
Tumor, Liver, and spleen samples were harvested and fixed in 10% neutral buffered formalin for 48 h, processed routinely, after which the tissues were embedded in paraffin, sectioned onto slides, and their morphologies were observed using hematoxylin and eosin (H&E) staining (Hou et al., 2011).

Results
Tumor size in each group
Four groups are mentioned below, and an image of one member of each group is presented in Figure 2. Moreover, the tumors sizes of groups 2 and 3 are illustrated in Figures 3 and 4, respectively.

- **Group 1**: five mice without any injection (as the negative control group) (Figure 2a).
- **Group 2**: five mice received 1x104 4T1 cells subcutaneously and at the same time were influenced by FCF (as a pretreatment sample group which is getting cancer – the model of the preventive effect of FCF) (Figure 2b).
- **Group 3**: five mice received 1x104 4T1 cells subcutaneously, and after 14 days, were influenced by FCF (as a sample group that received cancer and then treated- the model of the cor-
rective effect of FCF (Figure 2c).

- **Group 4**: five mice received 1x10^4 4T1 cells subcutaneously without the FCF treatment (as the cancer control group) (Figure 2d).

![Figure 2](image)

Figure 2. Dissection of one member of each group of the study. (a) The control mouse model. (b) The mouse model receiving cancer, and at the same time influenced by FCF treatment. (c) The mouse model received cancer, and then influenced by FCF. (d) The mouse model received cancer without FCF treatment.

![Figure 3](image)

Figure 3. The size of tumors in group 2 (pretreatment model of the FCF application).

![Figure 4](image)

Figure 4. The size of tumors in group 3 (post-treatment model of the FCF application).

After surgery, the weight, size, and volume of tumors in the three groups (2, 3, and 4) were measured and compared with each other (Table 1). The data showed that the tumor volumes and weights of treated mice in the preventive approach (group 2) decreased significantly in comparison with the positive control mice (group 4) by about 95% and 75%, respectively. Moreover, according to the data, there is no significant difference in the size and weight of tumors in group 3 (the FCF post-cancer treatment), and group 4 (cancer without treatment).
Table 1. Average size, volume, and weight of tumors in different mice groups of this study.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Average size/mm (length * width * diameter)</th>
<th>Average volume / mm3</th>
<th>Volume range / mm3</th>
<th>Average weight / gr</th>
<th>Weight range / gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.28.20.76</td>
<td>63.56</td>
<td>2.4-459</td>
<td>0.38</td>
<td>0.04-0.7</td>
</tr>
<tr>
<td>3</td>
<td>18.116.33.6</td>
<td>1062</td>
<td>180-2622</td>
<td>1.42</td>
<td>0.21-2.1</td>
</tr>
<tr>
<td>4</td>
<td>19.217.13.5</td>
<td>1149</td>
<td>94.5-2990</td>
<td>1.51</td>
<td>0.46-2.4</td>
</tr>
</tbody>
</table>

Histology of tumor mass, liver, and spleen in each group

Microscopic slides of tumor mass, liver, and spleen cross-sections in each group of the present study can be seen in Figures 5, 6, and 7, respectively. In confirming and completing the results of the previous section, the histologic analysis showed the development of the tumor in the FCF pre-treated, and the FCF post-treated mice (Fig. 6) with remarkable differences in size.

Figure 5. Microscopic slides of tumor mass in group 2 [a] and group 3 [b] in BALB/c mice. The images present an original magnification of x200. Scale bar, 100–200 µm.
Figure 6. Microscopic slides of the liver in control (a), group 2 (b), and group 3 (c) in BALB/c mice. Scale bar, 100–200 μm.
Figure 7. Microscopic slides of the spleen in control (a), group 2 (b), and group 3 (c) in BALB/c mice. Scale bar, 100–200 μm.
As can be seen in Figures 6 and 7, the FCF post-treated mice, in addition to tumor formation and enlargement, showed liver and spleen metastases, which was similar to group 4 (cancerous mice, untreated with FCF). However, FCF pre-treated mice had less tumor growth, and their livers and spleens were similar to healthy mice (control group). In other words, the livers, and spleens of the FCF pre-treated mice were not involved with the breast tumors.

Survival and behavior of mice

It was observed that two of the five mice in group 3 died before the end of the FCF treatment and the rest of them still had tumor burden, but with reduced tumor size. In contrast, the mice in group 2, had no evidence of disease and all five animals were alive. It was observed that one mouse in each control group (1 and 4) died. Interestingly, the only group without any death was group 2, in which pre-treatment with FCF resulted in significant improvement in the survival of treated animals. After surgery, it was found that not only the tumor sizes in groups 3 and 4 were remarkably larger than in group 2, but also a significant increase in liver and spleen size and tissue destruction occurred in group 2 (similar to negative control: group 1); these complications were not observed at all (more details mentioned in the previous section).

Discussion

Due to the prevalence of various types of cancer, using complementary and alternative medicine is one of the topics of interest and reference of researchers and experts globally. FCF as one of the TCFs has been introduced as a complementary therapy by Taheri. In this study, we examined the effects of FCF on tumor growth and metastasis. According to the results, the use of FCF in the model of induced cancer in mice, in the pretreatment model, completely led to the survival of mice, limitation of tumor size, and no metastasis. On the other hand, its use after complete tumor formation in mice does not achieve these results. These data suggest that (simultaneous) pre-treatment of mice receiving cancer with FCF can lead to tumor control and inhibition. However, post-tumor therapy did not inhibit the tumor growth (group 3) which was similar to untreated tumors (group 4). In addition, the survival of group 3 mice was lower than that of the untreated group. Simultaneous exposure of mice to cancer cells and FCF (group 2 mice) provided a better performance opportunity for FCF in the treatment of cancer because before the tumor was fully formed, the mouse body was exposed to FCF. According to the results, prevention of tumor size increase, lack of cell migration to adjacent tissues, and increased vitality and survival of the organism were observed in the group 2 mice.

As it was explained briefly in the introduction section, TCFs can apply to all living and non-living creatures. In the present study, a model of breast cancer at the mouse level was under influence of FCF, and optimization of the subject of the study, in the connection between mice and CCN, was done solely through Faradarmangar’s mind. In other words, the human mind has an intermediary role (Announcer), which plays a part by fleeting attention to the subject of the study, and then the main achievement is obtained as a result of the effects of the TCFs.

Although we cannot measure FCF directly and its mechanism is not clear yet, it is possible to investigate its effect through in vivo and in vitro experiments (Phase 0 in studying TCFs) Since the effect of FCF is initiated without any kind of physical intervention, it can be considered a safe way to control and prevent diseases like cancer.
Evidence for the functioning of FCF in this study, considering other studies in this field (Taheri et al., 2020a; Taheri et al., 2021b; Taheri et al., 2021c), supports the claim made by the founder of this approach, and fully suggests its use as a complementary and alternative medicine. Due to the remarkable results of this study in reducing the size and weight of the tumor in the animal model of cancer, conducting a study at the level of primary cancer cells and clinical human studies of this and other types of cancer, is on the research agenda of the authors.

Acknowledgments
The authors would like to acknowledge the Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran, for providing the data acquisition service for this research work.

References

