The Theory of the Existence of the "Mental Body in Matter" Based on the Experimental Laboratory Results and Taheri Consciousness Fields

Mohammad Ali Taheri¹, Firouz Payervand², Farzad Ahmadkhanlou³, Farid Semsarha⁴

ABSTRACT

The present study aimed to investigate the mechanism of effects of Taheri Consciousness Fields (TCFs) on the properties and behavior of materials using the previous experimental results in this field. By reviewing the existing evidence from the recent laboratory test results, a novel theory of the TCFs arises. The emergence of different properties and behavior of materials in the presence of the TCFs suggests that matter, in addition to the physical body (its constituent matter and energy), necessarily needs a "mental body". According to this theory, the mental body of matter includes information on each component of the system, the process of formation, and all its equilibrium and unbalanced states, and mental states that were formed during the process of the formation of matter, and its equilibrium state. The function of the mental body of matter is to maintain the information, to interact with the TCFs, to accept new mental states, and to exhibit behavior appropriate to the new mental state. According to this theory, which is completely based on the reproducible experimental laboratory results, the effects of the TCFs can be observed from two distinct aspects: TCFs and Matter. In the former aspect, it is equivalent to the application of one of the mental states in the coordinates of the mind of matter. In the latter aspect, this is equivalent to the occurrence of a behavior corresponding to the nature of matter experienced through evolution. In addition, this process takes place without giving or taking energy or changing the microstructure or arrangement of the matter. Moreover, this study explains why and how the properties and behavior of materials were changed under the influence of the TCFs while these Fields did not lead to a decrease or increase in the energy level of matter or change in the structure of matter.

Keywords: Mind of Matter, Materials Behavior, Mental Body, Taheri Consciousness Fields
The nature of consciousness and its place in science has received much attention in the current century. Many philosophical and scientific theories have been proposed in this area. In the 1980s, Mohammad Ali Taheri introduced novel fields with a non-material/non-energetic nature named Taheri-Consciousness Fields (TCFs). In this perspective, T-Consciousness is one of the three existing elements of the universe apart from matter and energy. According to this theory, there are various TCFs with different functions, which are the subcategories of a networked universal internet called the Cosmic Consciousness Network (CCN). The major difference between the theory of TCFs and other theoretical concepts about consciousness is related to the practical application of the TCFs. TCFs can be applied to all living and non-living creatures, including plants, animals, microorganisms, materials, etc.

Mohammad Ali Taheri, the founder of Erfan Keyhani Halqeh, a school of thought, introduced a new science in 2020 as a branch of this school. He coined the term Sciencefact for this new science because it utilizes scientific investigations to prove the existence of T-Consciousness as an irrefutable phenomenon and a fact. Although science focuses solely on the study of matter and energy and Sciencefact, by contrast, explores the effects of the [non-material/non-energetic] TCFs, Sciencefact has provided a common ground between the two by conducting reproducible laboratory experiments in various scientific fields, and it has used the scientific approach in proving TCFs.

The influence of the TCFs begins with the Connection between CCN as the Whole Taheri Consciousness of the universe and the subjects of study as a part. This Connection called “Ettesal” is established by a Faradarmangar’s mind (a certified and trained individual who has been entrusted with the TCFs). The human mind has an intermediary role (Announcer) which plays a part by fleeting attention to the subject of study and then the main achievement obtained as a result of the effects of the TCFs. These fields cannot be directly measured by science, but it is possible to investigate their effects on various subjects through reproducible laboratory experiments (Taheri, 2013).
The research methodology in the study of T-Consciousness has been founded on the process of Assumption, Argument, and Proof, in which the basic Assumption is: The Cosmos was formed by a third element called T-Consciousness that is different from matter and energy.

The Argument: The existence of TCFs can be demonstrated by its effects on matter and energy (e.g., humans, animals, plants, microorganisms, cells, materials, etc.)

The Proof: is the scientific verification of the effects of TCFs on matter and energy (according to the Argument) through various reproducible scientific experiments.

Accordingly, to investigate and verify the existence, effects, and mechanisms of TCFs, the following five research phases (Phases 0 through 4), and the aims of each phase are outlined below.

Phase-0 studies aim to prove the existence of TCFs by observing their effects. The nature of T-Consciousness and what it is will not be addressed in this phase. Phase-1 explores the varied effects of different TCFs. Phase-2 examines the reason behind the varied effects of these fields. Phase-3 investigates the mechanism of TCFs effects on matter and energy. Finally, Phase-4 draws significant conclusions, particularly with regard to the mind and memory of matter and their relation to the T-Consciousness, etc.

In previous research, the effects of the TCFs on MCF7 cancer cell line (Taheri et al., 2020a), in vivo and in vitro models of Alzheimer’s disease (Taheri et al., 2021b), spatial memory, and avoidance behavior of a rat model of Alzheimer’s disease (Taheri et al., 2021c), tolerance of Triticum aestivum L. under salinity stress (Torabi et al., 2020), bacterial population growth (Taheri et al., 2021d), Vesicular Stomatitis Virus (VSV), Herpes Simplex Virus 1 (HSV1), Encephalomyocarditis Virus (EMCV), and Reovirus (Taheri et al., 2021a), and the electrical activity of the brain during Faradarmani in the Faradar-mangars population (Taheri et al., 2020b) have been observed.
The Concept of Mind in Science and Philosophy

The mind is a concept that has always fascinated and confused human beings. Due to the inner and perceptual nature of the mind, its existence is self-assured. However, several questions remain unanswered empirically, such as why and how it comes into being and what its nature is. Theorizing in the field of mind is as old as the history of the thinking human. The relationship between mind and body is one of the main questions in the philosophy of mind with a history of several thousand years. Apart from philosophy, there are other disciplines that deal with mind-body interaction, including neuroscience, cognitive science, artificial intelligence, computer science, and psychology. In neuroscience, keywords, such as thought, perception, memory, learning, and intelligence are considered along with the mind, and part of its function (Bor et al., 2015).

In the psychological view of the mind and its corresponding theories, the mind represents the capacity and ability to cope with the mental states of other human beings (Leslie, 2001). According to the theory of mind, in this view, the ability to perceive and understand the mental states of others begins at the age of 3-4 years and completes within five years (Roth & Dicke, 2012). Since the early 1980s, there has been great interest in the theory of mind, how it developed, and its cognitive foundations. Based on the conventional views of mind theories and the functionalism view of the philosophy of mind, individuals act on a variety of mental states such as intention, desire, belief, hope, etc., which derive from the mind’s content and are regardless of the nature of the mind. It is the mind that plays an important and functional role in the behavior exhibited (Rey, 2020).

In the philosophy of mind, relying on scientific achievements such as experimental psychology, artificial intelligence, and biology, the interaction of mind-body is addressed, and other phenomena such as consciousness and the nature of specific mental states are considered (Rey, 2020). Dimensions of the mind studied in the philosophy of mind include mental events, mental functions, mental properties, consciousness, the ontology of the mind, the nature of thought, and the relationship between the mind and the body.

Philosophers have offered a variety of theories on mind-body interaction. Based on the explanations of certain mental states of human beings, such as feelings, desires, beliefs, and consciousness, philosophers’ opinions can be divided into two major groups (Safari K and Valeh, 2014): Dualism and Monism. Dualism separates the source of mental states from the body (brain). It distinguishes mental states and physical states into two distinct types of substance, each with its own unique properties. On the other hand, monism considers the source of mental states as the body. It considers mental and physical states to be of the same type with two characteristics. The monism narrative of physicalism is the dominant theory of contemporary philosophy of mind. Behaviorism, the Identity of Mind and Brain, and Functionalism are among the theories of this narrative. Behaviorism and the Identity of Mind and Brain Theories reduce mental states to behaviors and brain states, respectively (Safari K and Valeh, 2014).

Functionalism theory focuses on the role and function of the mind rather than on what the subjective is. According to this theory, regardless of the nature and manner of mental states, the functional roles of these states in relation to each other are of importance. According to functionalism, mental states and events are behavioral abilities and are the causal mediators between the sensory inputs of an identifier and its subsequent behavior (Britannica, 2008). According to this theory, what makes a state of mind is a functional relationship in which the
state of mind interacts with sensory stimuli, behavioral responses, and other emotional states. Examples of the states of mind are pain, the smell of violets, or the belief that bears are dangerous.

Based on most theories in the philosophy of mind, only human beings are considered to have minds (Hare 2001; Sherwood et al., 2008). In other theories, on the other hand, the existence of the mind in animals has been proposed (Vonk and Povinelli, 2006; Carruthers, 2013).

In the Panpsychism view, the mind has been considered a universal property of matter (Bohm, 1990). In this view, the mind in existence is fundamental and ubiquitous. This view has a long history in Eastern and Western philosophies and is now part of the analytical philosophy. For the followers of the Panpsychism view, this is an attractive shortcut between Physicalism and Duality.

Dualism is based on the separation of the mind from matter. According to this view, mind, and matter are fundamentally different and there will be a gap in the operational relationship between mind and brain. On the other hand, the simplistic Physicalistic view of the whole material world also did not have a description of the emergence and existence of consciousness at the animal and human levels. The difference between Panpsychism and Physicalism views is that the basic components of the materials also include the very basic forms of consciousness from which the most complex conscious experiences of humans and animals arise (Goff et al., 2020).

Recent theories have no empirical basis, and scientists have so far found no way to test them other than by turning to philosophy. According to one of the theories presented by Taheri (2011), not only the Mind, as one of the numerous existential bodies of a human being, is not a part of the brain, but the function of the brain is governed and managed by the Mind. The Mind is the software administrator of all the existential dimensions of a human being; it manages all the software of the various constituents/divisions of human existence in their entirety, including cellular function and management of the memory, learning, and recall faculties. It will be shown here that Sciencefact is a new window to the empirical proof of the matter mind (Taheri, 2011).

Matter and Its Properties in Science

Materials properties are traits that can be sensed (seen, heard, smelled, and touched), measured, or tested. Mass, density, electrical and thermal conductivities, flexibility, hardness, softness, color, and ignition temperature are examples of material properties. There are different classifications of the properties of materials. In general, material properties are divided into two main categories: physical and chemical properties (Callister, 2003).

Properties of a material that can be measured and observed without changing the basic composition of the material are the physical properties of the material. Properties such as mass, volume, density, boiling point, and conductivity are among the physical properties of materials. It should be noted that the mechanical, electrical, magnetic, and thermal properties of materials are subsets of physical properties that demonstrate the behavior of materials under a variety of forces or fields such as gravitational, electromagnetic, and thermal. On the other hand, chemical properties are detectable during or after the chemical reaction. Properties such as reactivity, surface energy, corrosion resistance, toxicity, and flammability are instances of the chemical properties of the materials. At first glance, the differences between the materials and their properties may seem to originate from their different elements and chemical compo-
sitions. However, even materials with the same constituent elements and compounds such as diamond and graphite can have completely different properties. More interestingly, materials with different elements and compounds may have very similar properties. For instance, cast aluminum 1080 (Al99.8) and beryllium oxide (BeO) exhibit the same thermal conductivity (thermtest.com).

Factors such as the atomic structure of matter have a significant effect on the properties of materials. In general, the constituent elements and bonds between atoms, the structure and micro-structure of materials determine the materials’ properties (Jacobs and Kilduff, 2005). To describe the macroscopic behavior of materials under the influence of external factors, such as pressure, temperature, and electromagnetic fields, the matter should be observed as a thermodynamic system in a reversible thermodynamic cycle. There are direct relationships between the properties of materials and their thermodynamic properties. For instance, by deriving free enthalpy and Gibbs free energy from external factors, one can arrive at the internal properties of the body (Brinke, 2012). Figure 3 shows a general model of factors affecting the macroscopic properties and behavior of materials. These factors include material composition, environmental factors/conditions, construction, and structure of materials.

Figure 3. The general model of factors affecting the macroscopic properties and behavior of materials

Materials Treatment with Taheri Consciousness Fields

Recently, the change in materials properties under different TCFs has been investigated by the authors. The experiment results for magnetic properties (Taheri et al., 2021), and the mechanical properties (Taheri et al., 2021) of materials demonstrated that these properties have been changed under the TCFs treatments. Although the materials under the test were at ambient temperature (20-25 °C), they exhibited behaviors at higher temperatures.

In these experiments under the TCFs treatments, all the external factors such as pressure, room temperature, electric field, and magnetic field were kept constant. The test results showed that the materials composition (type and amount of constituent elements) did not change. However, they showed abnormal behaviors as follows:

1. The behavior of nickel in a Vibrating-Sample Magnetometer (VSM), even three days after the
termination of the TCF treatment, was equivalent to the behavior in a temperature of about -133 °C. However, no low-temperature effects were observed in the structure of the material (²Taheri et al., 2021).

2. The behavior of alumina in the VSM, even seven days after the termination of the TCF treatment, was equivalent to the behavior at a temperature of about 500°C. However, no high-temperature effects were observed in the material (²Taheri et al., 2021).

3. The behavior of ST-37 steels specimens under the tensile test, even four days after the termination of the TCF treatment, was equivalent to the behavior in a temperature range of 600-800°C. However, no high-temperature effects were observed in the specimens (²Taheri et al., 2021).

The Key Question and Suggested Answers

As mentioned in section 3 of this paper, according to conventional science, the physical properties of materials are influenced by external factors and conditions, as well as the structural properties of materials. However, based on the results of this paper, distinct behaviors were observed for the control and the samples under the TCF treatment, even though no external factors were applied and the environmental conditions were the same and constant for both the control and the samples under the TCF treatment. This will raise a very crucial question: Why and how have the properties and behaviors of materials changed under the influence of TCFs? The following three possible causes of this question are effective in establishing a theory that explains how the TCF treatment influences the properties of materials.

Possible Cause 1: The effects of the TCFs are decreasing or increasing the energy level in the matter, and by doing so, they have changed the properties/behavior of matter similar to when the matter is cooled down or heated up.

If this is true, the temperature differential between the two behavioral states of the materials in each of the three tests explained in section 4 of this paper should be significant. Furthermore, after the termination of TCF treatment, the material should gradually get back to the ambient temperature and reexhibit the properties, at the ambient temperature. However, in none of the experiments in section 4, the effects of cooling or heating were observed in the materials. Moreover, the properties of the materials changed by the TCF treatment even several days after the experiments. Therefore, the effects of the TCF treatment cannot appear as a decrease or increase in the level of energy in matter and change in the properties or behaviors of matter by internal cooling or heating. Consequently, possible cause 1 is not theoretically acceptable and valid.

Possible Cause 2: The TCFs have changed the properties and behaviors of matter by changing the structure of matter. The crystal structures of the materials used in three distinct experimental sets in section 4, are discussed below.

a) Nickel properties and behavior in set 1 of the experiments

The crystal structure of nickel is typically the Face-Centered Cubic (FCC). Under a certain manufacturing process at higher temperatures, a Hexagonal Close Packed (HCP) crystal structure can also be feasible for a nickel. However, it should be noted that the magnetization capa-
bilities of nickel in the form of HCP crystals are weaker than its FCC crystal form (Mourdikoudis et al., 2009). Since the magnetization saturation of nickel under the TCF treatment has increased, the crystal structure of nickel cannot be changed to HCP in this set of experiments. In other words, the effect of the TCF treatment in changing the properties or behaviors of the materials cannot be due to the change in the structure of nickel.

![Figure 4. Metallic crystal structures: FCC and HCP (Image courtesy of qstudy.com/chemistry)](image)

b) Alumina properties and behavior in set 2 of the experiments

The common crystal structure of aluminum oxide is alpha (α) alumina. In this structure, the oxygen ions are densely hexagonal (HCP), and the Al\(^{3+}\) ions occupy two-thirds of the octagonal voids. At the center of this structure is Al\(^{3+}\) in the form of an octagon. Alumina is also available in other crystal structures such as γ and κ. Each of these crystal structures has its specific properties. All these crystal structures are formed after heating alumina, are unstable, and eventually return to the α crystal structure (Levin and Brandon, 1998).

![Figure 5. Crystal structure of α-alumina (Image courtesy of Čurković et al., 2008)](image)
In set 2 of experiments, the saturation magnetism of alumina decreased under the TCF treatment and the behavior of alumina after this treatment was equivalent to the behavior of alumina at about 500 °C temperature. Therefore, one may assume that the crystal structure of alumina has changed from the α structure. However, as this new hypothetical crystal structure is unstable, after the termination of the TCF treatment, the crystal structure of alumina must return to the α state, and the alumina sample under the TCF must exhibit property and behavior similar to that of the control material. However, this was not observed in any of the experiments in set 2. Even several days after the termination of the TCF treatment, the changes in the properties and behavior of alumina samples were observed, and they were stable. Therefore, the effect of the TCF treatment in changing the properties and behavior of alumina cannot be a result of a change in the structure of alumina.

c) Carbon steel properties and behavior in set 3 of experiments

Carbon steel has allotropic properties in the form of Body-Centered Cubic (BCC) crystal up to about 700°C temperature (α-steel). Then, it is in the form of FCC crystal (γ-steel) up to about 1150°C temperature. Above this temperature, it is again back to the BCC crystalline structure (δ-steel), and retains this crystalline structure up to about 1500°C temperature before it melts (Chipman et al., 1972).

Evidently, by changing the structure of the steel crystal lattice, its properties and behavior will change. For instance, by changing the steel crystal structure from BCC to FCC, its volume increases, its thermal and electrical conductivities decrease, and its magnetic properties disappear. Moreover, the change in temperature will also change the microstructure of steel, such as shape, size, and how the steel grains are arranged.

In the experiments of set 3, Young’s modulus of elasticity of the ST-37 carbon steel decreased under the TCF treatment and the behavior of the steel after the treatment was equivalent to the behavior of steel at about 600-800°C temperature. One may assume that the crystallinity structures and microstructure of steel have changed from alpha (α) to gamma (γ). However, since this new hypothetical crystal structure is specific to the high temperatures and is unstable after the termination of the TCF treatment, the crystal structure and microstructure of steel must return to alpha and the test specimens under the TCF treatment should exhibit properties and behavior similar to the control specimens. However, the test results of the steel specimens do not show such an expected-back-to-normal behavior. In all experiments in set 3, the changes in the properties and behavior of the carbon steel material were evident, even several days after the TCF treatment termination. Therefore, the effect of the TCFs treatment on the change of properties and behavior of the carbon steel cannot be due to a change in the structure or microstructure of the steel.

From the discussions in parts a, b, and c of this section, it is concluded that the TCFs did not change the structure of the matter in any of the experiments. Therefore, the possible cause 2 is not theoretically acceptable.

Possible Cause 3: TCFs change the behavior of materials by changing their mental states.
In principle, TCFs are neither energy nor matter, and cannot transfer energy to matter in the form of radiation. It has been argued by the authors of this paper that the TCF is distinct from electric, magnetic, and electromagnetic fields (aTaheri et al., 2021). The results in the emergence of a novel theory on how the properties and behavior of materials are influenced by TCFs: Materials also have a level of mind, called the mental body, that has a similar function to the human mind. The TCFs change the behavior of materials by changing their mental states.

Based on the findings of recent experimental studies, instead of focusing on what the matter is, we focus on the role and function of the mind in matter. The concept of mind at the material level is proposed, considering the following points and cases:

1. For materials to be able to exhibit different properties and behaviors under the influence of the TCFs, they must have a mental body in addition to the physical body which is the matter and energy constituents.

2. The mental body of matter includes (a) information and (b) data from other mental states.

 a. The information includes the information about each component of the system, the process of formation, and all its equilibrium and non-equilibrium states.

 b. The other mental states have been formed during the process of formation of matter and while reaching its existing equilibrium state.

 The functions of the mental body are to maintain the information and data of other mental states, interact with the TCFs, accept new mental states, and generate behavior appropriate to the new mental state.

The model of the effect of materials under TCF treatment is shown in Figure 6. This is the functional model of the influence of materials under TCF treatment. According to this model, the TCF exposes the mental body of matter to the selection of a new mental state, at the request of an Announcer (Faradarmangar) who is a trained person in the initiation and applications of TCFs. The mental body of matter, under the treatment of the TCF, accepts the presented new mental state and is placed in that updated state presented by the TCF. Consequently, properties and behaviors corresponding to the new state of mind are manifested in the matter.

According to this model, information about the new requested state of mind is present in the mental body of matter as a type of memory. In other words, the matter has already experienced the requested mental state in some way before and in its evolutionary path. This memory is about each of the constituent components of matter, the process of formation, and all its equilibrium and non-equilibrium states.

The effect of the TCFs can be observed from two distinct aspects: (a) From TCFs aspect; this effect is equivalent to choosing one of the mental states in the coordinates of the mind-matter, and (b) from the matter aspect, this is equivalent to the occurrence of the behavior corresponding to the nature of matter experienced through evolution. Moreover, this process takes place without the need for any exchange of energy (giving or receiving) or any changes in the microstructure or crystal arrangements of the material.
Conclusion

By objectively examining and analyzing the data and results of the experimental tests from the recent studies of changes in the properties and behavior of materials under the influence of the TCFs, the following conclusions can be derived:

1. The effects of the TCFs treatment on the change of properties and behavior of matter are not because of a change in the energy level of matter, and consequently, not due to a change in the internal energy and temperature. Additionally, the effects of the TCFs treatment on the change of properties and behavior are not a result of a change in the microstructure of matter.

2. Although the nature of the properties and behavior of materials cannot be explained by using experimental data, it is possible to consider a level of mind in materials, the so-called mental-body, that has a function similar to the human mind. This view is similar to the Functionalist view. Therefore, the behavior of matter under the influence of the TCFs can be explained.

3. According to the results of recent experimental studies, to exhibit different properties and behaviors under the influence of the TCFs, the matter should have a mental body in addition to the physical body, which contains the physical constituents of the matter, i.e., matter and the energy.

4. The mental body of matter includes: (a) the information and (b) the mental states. The information contains the data of each component of the system, the process of formation, and all its equilibrium and non-equilibrium states. The mental states have evolved during the process of formation of matter and reaching their existing equilibrium state.

5. Functionality of the mental body is the maintenance of the information and mental states, the interaction with the TCFs, acceptance of new mental states, and generating a behavior, corresponding to the new mental state.

6. According to the functional model of the effect of TCFs through the mind of matter, the effect of these fields can be observed from two distinct aspects: (a) From the TCF aspect, this effect is equivalent to choosing one of the men-

Figure 6. Model of the impact of matter under the treatment of Consciousness Fields (functional model of the effect of the Consciousness Fields through the mind of matter).
tals states in the coordinates of the mind-matter, and (b) from the matter aspect, this is equivalent to the occurrence of behavior corresponding to the nature of matter experienced through evolution.

The authors of this paper will be continuing experimental laboratory studies on the effects of TCFs on different types of materials and ener-
gies, and the results will be presented in future papers.

Acknowledgments
The authors would like to thank Mr. Reza Yazdanparast, and Ms. Sara Torabi for their cooperation in coordinating this study.

References