Investigating the Influence of the Taheri Consciousness Field (1) on the Magnetic Properties of Pure Iron Atoms in Microgravity Conditions

Mohammad Ali Taheri¹, Firouz Payervand², Amir Moslehi³, Farzad Ahmadkhanlou³, Sara Torabi³, Farid Semsarha⁴

1- ScienceFact Research and Development Department, CosmoIntel Research Center, Ontario, Canada
2- Research and Development Consultant, Tehran, Iran
3- Nuclear Science and Technology Researcher, Tehran, Iran
4- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California, USA
5- Department of Plant Biology, School of Biology, College of sciences, University of Tehran, Tehran, Iran
6- Biochemistry and Biophysics Research Center, University of Tehran, Tehran, Iran

* Corresponding Author: Firouz Payervand
 Email: fpayervand@yahoo.com
DOI: doi.org/10.61450/joci.v2i12.167

Abstract

Iron atom is the most abundant element that makes up the earth's mass with ferromagnetic property and its saturation magnetization can be easily investigated. Also, because the magnetic property of the earth has been attributed to it (Geodynamo theory), it has been chosen as the subject of this study. Before this, the investigation of the effect of microgravity on the vital properties of cells and plants showed that T-Consciousness Fields (TCFs) can not only be effective on such organisms but also cause the removal of destructive and harmful effects on life. In this study, to investigate the effect of TCFs on material and non-living beings, the magnetization property of pure iron atoms in microgravity conditions and under the treatment of TCF 1 has been investigated. Based on the results obtained from this study, the saturation magnetization property of pure iron in microgravity conditions obtained from the clinostat device and in the control mode (without the application of TCF) is reduced by about 25% compared to the saturation magnetization of iron in the earth's gravity conditions, while the saturation magnetization of the samples under the treatment of TCF 1 in the same condition and while placed in the device simultaneously with the control samples, resist the reduction of the saturation magnetization. In other words, the TCFs 1 completely maintains the conditions necessary to keep the saturation magnetization of the sample in the earth’s gravity, in the conditions of reduced gravity (microgravity).

Keywords: Iron, Microgravity, Saturation magnetization, T-Consciousness Field 1
Introduction

Iron is the fourth most abundant element in the earth’s crust after oxygen, silicon and aluminum (1). On the other hand, iron is the most abundant chemical element in the earth’s core and constitutes more than 85% by weight of its mass, and the remaining 15% is Ni and some lighter elements such as Si, C, S, O and H. Based on this, in total, it is the most abundant element that makes up the mass (material totality) of the Earth (2).

In terms of magnetic properties, iron is one of the ferromagnetic materials of nature (3). In the 3d series of the periodic table, the 3d orbitals are gradually being filled and more protons are added to the nucleus.

For elements beyond V, the orbital overlap is so weak that the 3d electrons are no longer effective in bonding and the valence electrons begin to unpair; At this stage, the elements become magnetized and can be magnetized under the influence of the external magnetic field.

The external magnetic field moves the solid away from its lowest energy state (random orientation), so its magnetization is associated with the application of energy. When the external magnetic field is removed, the arrays tend to become passive, but the iron can retain a large amount of its magnetization, or in other words, its magnetization “memory” (5).

VSM (Vibrational Scanning Magnetometer) device has been used in this study to investigate iron saturation magnetization. This experiment provides a possibility to examine the effect of T-Consciousness Fields on materials in microgravity conditions and compare them with their effect on living organisms.

Method

The samples under T-Consciousness Field application and the control samples (without T-Consciousness Field application) were made of pure iron solid powder with a grain size of about 110 microns. To apply microgravity conditions, the sample and control were placed in the classic clinostat (6) rotating at 10 RPM (revolutions per minute).

After 24 hours of being placed in microgravity conditions, the samples were removed from the device and sent to the relevant laboratory to measure the saturation magnetization. The time of measuring the saturation magnetization of the sample and the control was the same about two weeks after the moment of the treatment of the T-Consciousness Field 1 and the completion of their microgravity treatment under these conditions.
Results and Discussion

Figure 2 shows the magnetization curve of the sample and the controls of this study side by side. The data related to the saturation magnetization of the sample and the control of this study, extracted from the graph in Figure 2, along with the figures related to pure iron in other studies (7 and 8) are listed in Table 1. The significance of the obtained results is presented in Figure 3a. It should be noted that due to the same answers one sample of the control and one sample of the treatment have been removed from the data.

![Figure 2. Comparison of the magnetization curves of sample and controls in this study](image)

Table 1. The saturation magnetization of samples under the influence of TCF 1 and control in microgravity condition.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Magnetization</th>
<th>Value</th>
<th>M-Ave</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG02</td>
<td>10000</td>
<td>154.926</td>
<td>163.588±12.246</td>
<td>221.71±0.08</td>
</tr>
<tr>
<td>MG03</td>
<td>10000</td>
<td>172.269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG12</td>
<td>9100</td>
<td>226.58</td>
<td>216.945±13.626</td>
<td></td>
</tr>
<tr>
<td>MG13</td>
<td>10000</td>
<td>207.311</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MG: microgravity

![Figure 3. Examining the significance of the saturation magnetization values of the sample and controls in this study](image)
As observed, the saturation magnetization level of the control in microgravity conditions is about 25% less than the saturation magnetization under Earth's gravity in other studies (7 and 8). This is while the sample's saturation magnetization in microgravity conditions is almost equal to the magnetization reported under Earth's gravity (under 2% and negligible). According to the results obtained from this study, the T-Consciousness Field 1 in microgravity conditions has provided the necessary conditions for maintaining the iron element's saturation magnetization similar to Earth's gravity values. Analysis and calculation of parameters related to the reduction achieved in the iron control's magnetization, repeating the test under Earth's gravity conditions, examining the physical structure of the sample and control of this study with XRD technique, and physical analysis governing the manner of T-Consciousness Field 1's impact in maintaining Earth-like magnetization, are on the agenda of the authors of this study.

References


